This post shows how to read prices of stock prices with a list of symbols as a string using Python. Splitting data by price types or symbols are illustrated as examples.
Python Jupyter notebook code
The following code downloads collection of stock prices.
import yfinance as yf import pandas as pd symbols = ['^GSPC','^VIX', '^FTSE', '^N225', '^HSI'] data = yf.download(symbols, start='2022-12-01', end ='2022-12-06') print(data)
[*********************100%***********************] 5 of 5 completed Adj Close \ ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7558.500000 4076.570068 18736.439453 28226.080078 19.840000 2022-12-02 7556.200195 4071.699951 18675.349609 27777.900391 19.059999 2022-12-05 7567.500000 3998.840088 19518.289062 27820.400391 20.750000 Close \ ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7558.500000 4076.570068 18736.439453 28226.080078 19.840000 2022-12-02 7556.200195 4071.699951 18675.349609 27777.900391 19.059999 2022-12-05 7567.500000 3998.840088 19518.289062 27820.400391 20.750000 ... Open \ ... ^FTSE ^GSPC ^HSI ^N225 Date ... 2022-12-01 ... 7573.100098 4087.139893 19058.900391 28273.130859 2022-12-02 ... 7558.500000 4040.169922 18785.279297 27983.179688 2022-12-05 ... 7556.200195 4052.020020 19221.679688 27752.990234 Volume ^VIX ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 20.830000 642843000 4527130000 4262000300 71400000 0 2022-12-02 20.420000 540219900 4012620000 3757394000 79400000 0 2022-12-05 20.299999 509145400 4280820000 4890142300 63900000 0 [3 rows x 30 columns]
We can split data by type of prices such as Adj Close, Close, Open, and the like.
# Splitting the downloaded data into separate DataFrames adj_close_df = data['Adj Close'] close_df = data['Close'] high_df = data['High'] low_df = data['Low'] open_df = data['Open'] volume_df = data['Volume'] # Printing the separate DataFrames print("Adj Close:"); print(adj_close_df.round(2)) print("\nClose:"); print(close_df.round(2)) print("\nHigh:"); print(high_df.round(2)) print("\nLow:"); print(low_df.round(2)) print("\nOpen:"); print(open_df.round(2)) print("\nVolume:"); print(volume_df)
Adj Close: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7558.5 4076.57 18736.44 28226.08 19.84 2022-12-02 7556.2 4071.70 18675.35 27777.90 19.06 2022-12-05 7567.5 3998.84 19518.29 27820.40 20.75 Close: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7558.5 4076.57 18736.44 28226.08 19.84 2022-12-02 7556.2 4071.70 18675.35 27777.90 19.06 2022-12-05 7567.5 3998.84 19518.29 27820.40 20.75 High: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7599.7 4100.51 19237.45 28423.46 21.06 2022-12-02 7570.5 4080.48 18841.22 27983.18 20.96 2022-12-05 7598.2 4052.45 19539.60 27854.11 21.29 Low: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7552.3 4050.87 18679.35 28226.08 19.80 2022-12-02 7508.0 4026.63 18530.82 27662.12 18.95 2022-12-05 7547.8 3984.49 19035.14 27700.86 19.78 Open: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 7573.1 4087.14 19058.90 28273.13 20.83 2022-12-02 7558.5 4040.17 18785.28 27983.18 20.42 2022-12-05 7556.2 4052.02 19221.68 27752.99 20.30 Volume: ^FTSE ^GSPC ^HSI ^N225 ^VIX Date 2022-12-01 642843000 4527130000 4262000300 71400000 0 2022-12-02 540219900 4012620000 3757394000 79400000 0 2022-12-05 509145400 4280820000 4890142300 63900000 0
We can also split data by each symbols.
# Create a MultiIndex from the columns data.columns = data.columns.swaplevel(0, 1) data.sort_index(axis=1, level=0, inplace=True) # Split the data based on symbols symbol_dfs = {} for symbol in symbols: # Create a copy of the DataFrame symbol_dfs[symbol] = data[symbol].copy() # Divide 'Volume' column by 1000 symbol_dfs[symbol]['Volume'] /= 1000000 symbol_dfs[symbol] = symbol_dfs[symbol].round(0) # Print the separate DataFrames for symbol, df in symbol_dfs.items(): print(f"Data for symbol: {symbol}") print(df)
Data for symbol: ^GSPC Adj Close Close High Low Open Volume Date 2022-12-01 4077.0 4077.0 4101.0 4051.0 4087.0 4527.0 2022-12-02 4072.0 4072.0 4080.0 4027.0 4040.0 4013.0 2022-12-05 3999.0 3999.0 4052.0 3984.0 4052.0 4281.0 Data for symbol: ^VIX Adj Close Close High Low Open Volume Date 2022-12-01 20.0 20.0 21.0 20.0 21.0 0.0 2022-12-02 19.0 19.0 21.0 19.0 20.0 0.0 2022-12-05 21.0 21.0 21.0 20.0 20.0 0.0 Data for symbol: ^FTSE Adj Close Close High Low Open Volume Date 2022-12-01 7558.0 7558.0 7600.0 7552.0 7573.0 643.0 2022-12-02 7556.0 7556.0 7570.0 7508.0 7558.0 540.0 2022-12-05 7568.0 7568.0 7598.0 7548.0 7556.0 509.0 Data for symbol: ^N225 Adj Close Close High Low Open Volume Date 2022-12-01 28226.0 28226.0 28423.0 28226.0 28273.0 71.0 2022-12-02 27778.0 27778.0 27983.0 27662.0 27983.0 79.0 2022-12-05 27820.0 27820.0 27854.0 27701.0 27753.0 64.0 Data for symbol: ^HSI Adj Close Close High Low Open Volume Date 2022-12-01 18736.0 18736.0 19237.0 18679.0 19059.0 4262.0 2022-12-02 18675.0 18675.0 18841.0 18531.0 18785.0 3757.0 2022-12-05 19518.0 19518.0 19540.0 19035.0 19222.0 4890.0
Originally posted on SHLee AI Financial Model blog.
Disclosure: Interactive Brokers
Information posted on IBKR Campus that is provided by third-parties does NOT constitute a recommendation that you should contract for the services of that third party. Third-party participants who contribute to IBKR Campus are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.
This material is from SHLee AI Financial Model and is being posted with its permission. The views expressed in this material are solely those of the author and/or SHLee AI Financial Model and Interactive Brokers is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to buy or sell any security. It should not be construed as research or investment advice or a recommendation to buy, sell or hold any security or commodity. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.
Join The Conversation
If you have a general question, it may already be covered in our FAQs. If you have an account-specific question or concern, please reach out to Client Services.