Learn how to use tidyverse with these practical examples in Part I and Part II.
What if we have more than one variable in our orignal data?
One of the benefits of working with longer “tidy” data is that we can have multiple variables per date/stock observation.
testwider <- testdata %>%
mutate(volume = 100:106,
otherfeature = 200:206)
testwider
## # A tibble: 7 x 5
## date ticker returns volume otherfeature
## <dbl> <chr> <dbl> <int> <int>
## 1 1 AMZN 0.01 100 200
## 2 1 FB 0.02 101 201
## 3 2 AMZN 0.03 102 202
## 4 2 FB 0.04 103 203
## 5 2 TSLA 0.05 104 204
## 6 3 AMZN 0.06 105 205
## 7 3 TSLA 0.07 106 206
Again, we’re missing data for TSLA on date 1 and FB on date 3, but now we’re also missing volume
and otherfeature
in addition to returns
.
To use complete
, nothing changes from earlier:
testwider %>%
complete(date, ticker)
## # A tibble: 9 x 5
## date ticker returns volume otherfeature
## <dbl> <chr> <dbl> <int> <int>
## 1 1 AMZN 0.01 100 200
## 2 1 FB 0.02 101 201
## 3 1 TSLA NA NA NA
## 4 2 AMZN 0.03 102 202
## 5 2 FB 0.04 103 203
## 6 2 TSLA 0.05 104 204
## 7 3 AMZN 0.06 105 205
## 8 3 FB NA NA NA
## 9 3 TSLA 0.07 106 206
However if we want to pivot back and forth, we do the following:
- use
pivot_wide
to reshape the data to row per date, with a column for each stock - use
pivot_long
to reshape it back to its longer format - use
left_join
to recover the rest of the variables from the original data.
testwider %>%
pivot_wider(id_cols = date, names_from = ticker, values_from = returns) %>%
pivot_longer(-date, names_to = 'ticker', values_to = 'returns') %>%
left_join(testwider, by = c('date', 'ticker', 'returns'))
## # A tibble: 9 x 5
## date ticker returns volume otherfeature
## <dbl> <chr> <dbl> <int> <int>
## 1 1 AMZN 0.01 100 200
## 2 1 FB 0.02 101 201
## 3 1 TSLA NA NA NA
## 4 2 AMZN 0.03 102 202
## 5 2 FB 0.04 103 203
## 6 2 TSLA 0.05 104 204
## 7 3 AMZN 0.06 105 205
## 8 3 FB NA NA NA
## 9 3 TSLA 0.07 106 206
Conclusions
- Missing values in financial data threaten the validity of quant analysis due to inadvertent misalignment
- Wide data tends to highlight such missing data
- Long data tends to hide it
tidyr::complete
is a succinct and efficient way to ensure that missing observations are accounted for withNA
- Like most tasks in R, there is more than one way to go about it. But
complete
should be your go-to function.
Want all the code?
All the code in this post is available in our github repo where you can find lots of other recipes and tools to make your life as a quant researcher easier.
See the full article on Robot Wealth website: https://robotwealth.com/how-to-fill-gaps-in-large-stock-data-universes-using-tidyr-and-dplyr/.
Disclosure: Interactive Brokers
Information posted on IBKR Campus that is provided by third-parties does NOT constitute a recommendation that you should contract for the services of that third party. Third-party participants who contribute to IBKR Campus are independent of Interactive Brokers and Interactive Brokers does not make any representations or warranties concerning the services offered, their past or future performance, or the accuracy of the information provided by the third party. Past performance is no guarantee of future results.
This material is from Robot Wealth and is being posted with its permission. The views expressed in this material are solely those of the author and/or Robot Wealth and Interactive Brokers is not endorsing or recommending any investment or trading discussed in the material. This material is not and should not be construed as an offer to buy or sell any security. It should not be construed as research or investment advice or a recommendation to buy, sell or hold any security or commodity. This material does not and is not intended to take into account the particular financial conditions, investment objectives or requirements of individual customers. Before acting on this material, you should consider whether it is suitable for your particular circumstances and, as necessary, seek professional advice.
Disclosure: Displaying Symbols on Video
Any stock, options or futures symbols displayed are for illustrative purposes only and are not intended to portray recommendations.